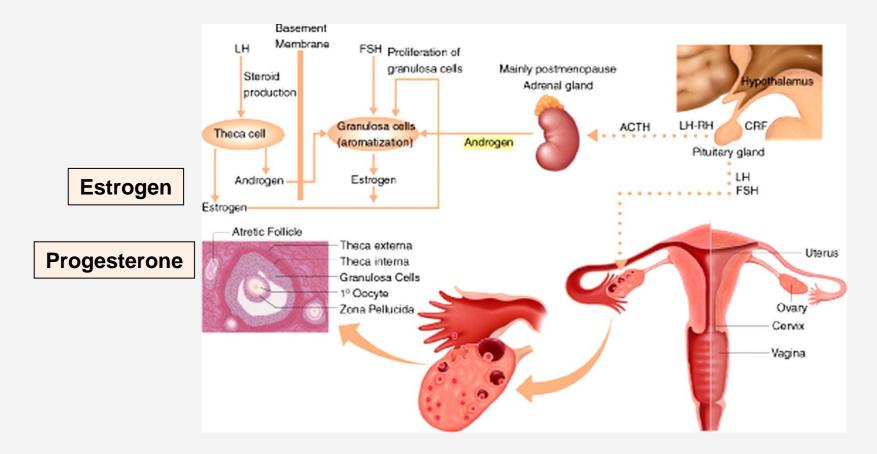
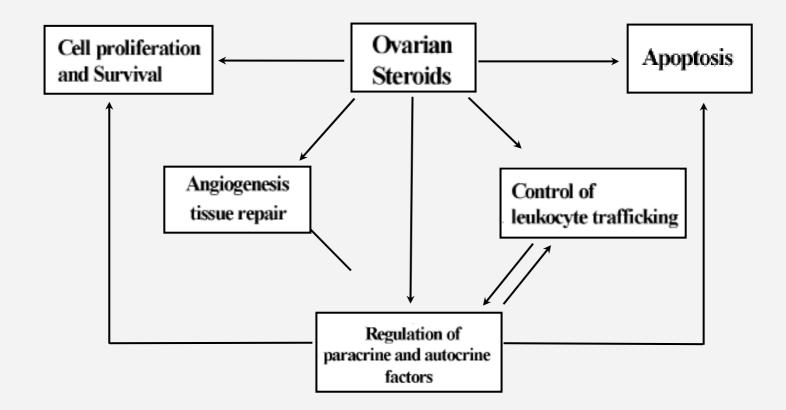


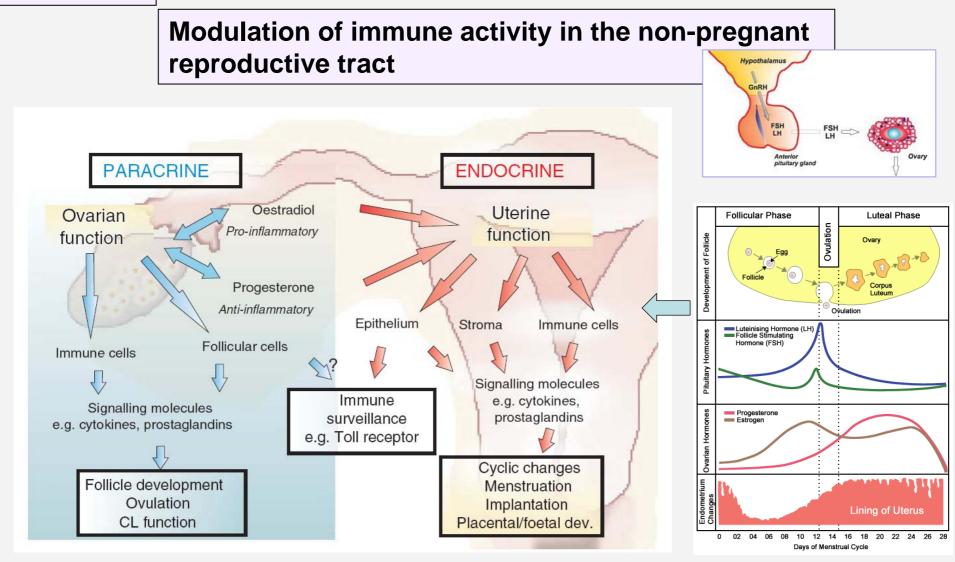
Action of Progesterone on Immune Cells



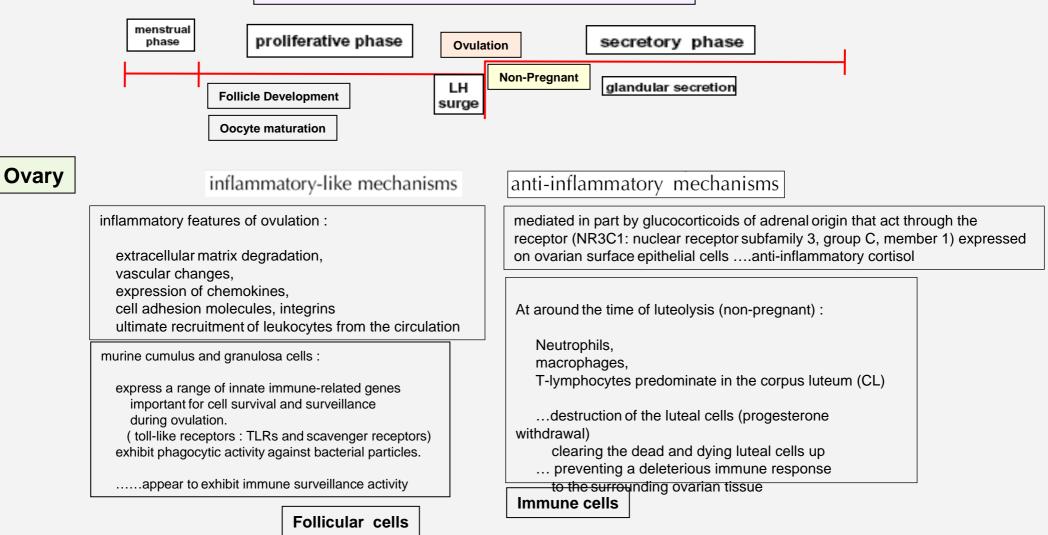
In-Bai Chung, M.D., Ph.D.


Department of Obstetrics and Gynecology, Wonju College of Medicine, Yonsei University

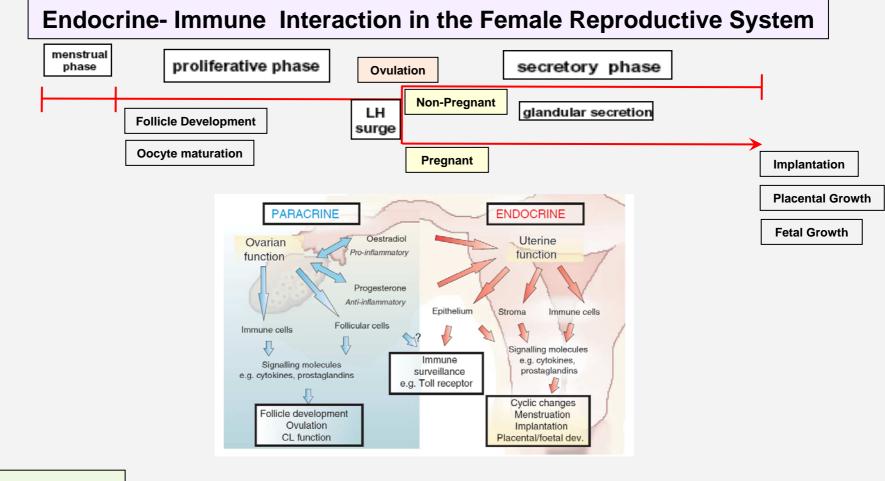
Introduction


Synthesis of sex steroids

Regulation of endometrial events by ovarian steroids.



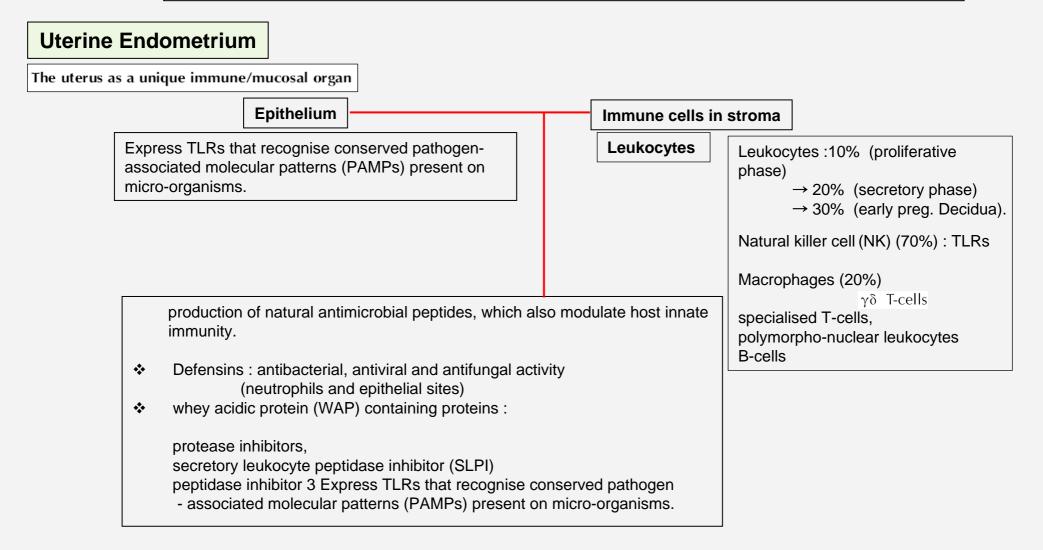
Introduction

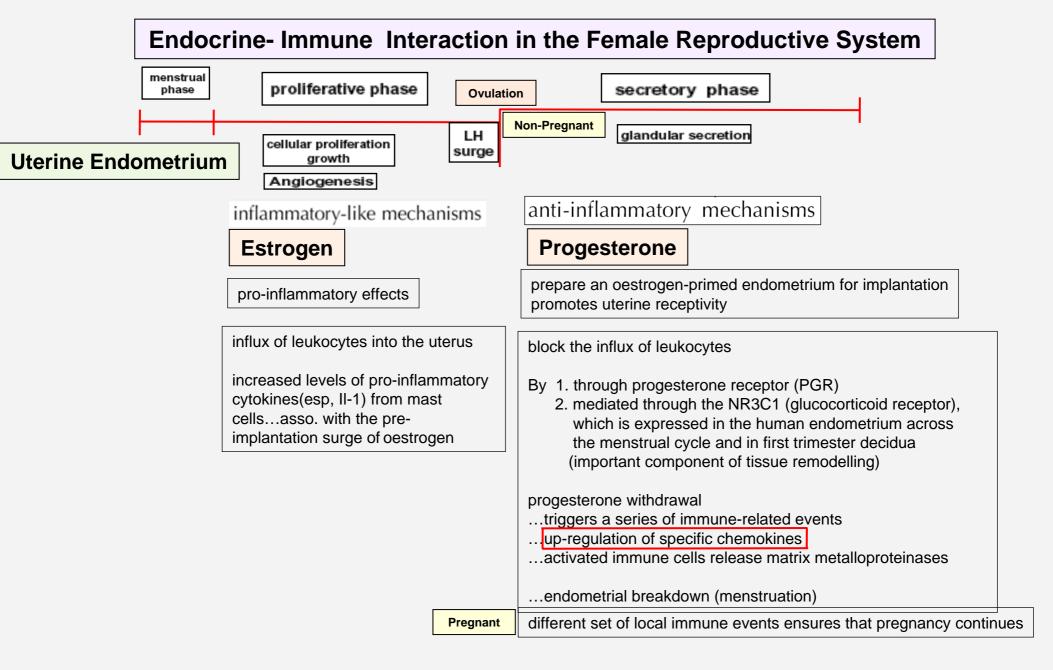


1: Reproduction. 2007 Sep;134(3):389-404. Immunoendocrine aspects of endometrial function and implantation.

Female Reproductive Processes

Immunoendocrine crosstalk in reproductive biology


Uterine Endometrium


The uterus as a unique immune/mucosal organ

immune surveillance activity to: commensal flora , infectious agents (bacteria, yeast, viruses) sperm semi-allogeneic blastocyst

Immune surveillance and response to pathogens in the non-pregnant reproductive tract

Endocrine- Immune Interaction in the Female Reproductive System

Gene name ^a	Symbol	Species	Target cell/tissue	Study	Progesterone effect	Reference
Chemokines and receptors				-		
Chemokine (C-C motif) ligand 2	CCL2	Human	Endometrium	In vitro	_	Critchley et al. (1999)
enemie (e e men) igne i	0.012	Sheep	Endometrial eosinophils	In vivo	+	Asselin et al. (2001)
Chemokine (C-C motif) ligand 3	CCL3	Human	Endometrium	In vivo	+	Catalano et al. (2007)
Chemokine (C-C motif) ligand 8	CC18	Human	Endometrium	In vivo	+	Catalano et al. (2007)
Chemokine (C-C motif) ligand 13	CCL13	Human	Endometrium	In vivo	+	Catalano et al. (2007)
Chemokine (C-X3-C motif) ligand 1	CX3CL1	Human	Endometrium	In vivo	_	Catalano et al. (2007)
Chemokine (C-X-C motif) ligand 1	CXCL1	Human	Endometrium	In vivo	+	Catalano et al. (2007)
Chemokine (C-X-C motif) ligand 5	CXCL5	Human	Endometrium	In vivo	_	Catalano et al. (2007)
Chemokine (C-X-C motif) ligand 12	CXCL12	Human	Endometrium	In vivo	_	Catalano et al. (2007)
Chemokine (C-X-C motif) ligand 13	CXCL13	Human	Endometrium	In vivo	+	Catalano et al. (2007)
Chemokine (C-X-C motif) receptor 4	Cxcr4	Mouse	Uterus	In vivo	_	Jeong et al. (2005)
Chemokine orphan receptor 1	CMKOR1	Human	Endometrium	In vivo	+	Catalano et al. (2007)
Chemokine-like factor superfamily 6	CKLFSF6	Human	Endometrium	In vivo	_	Catalano et al. (2007)
Interleukin-8	IL-8	Human	Endometrium	In vitro	-	Critchley et al. (1999)
Small chemokine (C-C motif) ligand 11	Ccl11	Mouse	Uterus	In vivo	-	Cheon et al. (2002)
Cytokines, growth factors and receptors						
Colony-stimulating factor 1	CSF1	Human	T-cells from decidua and peripheral blood	In vitro	+	Piccinni (2006)
Interleukin-4	IL-4	Human	T-cells from decidua and peripheral blood	In vitro	+	Piccinni (2006)
Interleukin-5	IL-5	Human	T-cells from decidua and peripheral blood	In vitro	+	Piccinni (2006)
Interleukin-15	IL-15	Human	First trimester decidual cells	In vitro	+	Kitaya et al. (2000)
Interleukin-1 receptor, type I	IL1R1	Human	Endometrial stromal cells	In vitro	+	Okada et al. (2003)
	11111	Mouse	Uterus	In vivo	+	Cheon et al. (2002)
Interleukin-4 receptor, a	ll4ra	Mouse	Uterus	In vivo	-	Cheon et al. (2002)
Interleukin-13 receptor, a2	IL 13RA2	Human	Endometrial stromal cells	In vitro	-	Okada et al. (2003)
			Endometrium	In vivo	-	Catalano et al. (2007)
	ll13ra2	Mouse	Uterus	In vivo	+	Cheon et al. (2002) and Jeong et al. (2005)
Leukaemia-inhibitory factor	LIF	Human	T-cells from decidua and peripheral blood	In vitro	+	Piccinni (2006)
Myeloid leukaemia factor 1	MLF1	Human	Endometrium	In vivo	-	Catalano et al. (2007)
Small inducible cytokine subfamily E, member 1 (endothelial monocyte activating)	SCYE1	Human	Endometrium	In vivo	-	Catalano et al. (2007)
Transforming growth factor, B1	TGFB1	Human	Endometrium	In vivo	+	Catalano et al. (2007)
Tumour necrosis factor receptor superfamily, member 1A	TNFRSF1A	Human	Endometrium	In vivo	_	Catalano et al. (2007)
Tumour necrosis factor receptor superfamily, member 21	TNFRSF21	Human	Endometrium	In vivo	-	Catalano et al. (2007)
Immune cell markers						
CD1d1 antigen	Cd1d1	Mouse	Uterus	In vivo	-	Jeong et al. (2005)
CD24a antigen	CD24a	Mouse	Uterus	In vivo	-	Cheon et al. (2002) and Jeong et al. (2005)
CD69 antigen (p60, early T-cell activation antigen)	CD69	Human	Endometrium	In vivo	-	Catalano et al. (2007)

CD74 antigen (invariant polypeptide of major histocompatibility complex, class II antigen associated)	Cd74	Mouse	Uterus	In vivo	+	Cheon et al. (2002)
Cytotoxic T-lymphocyte-associated protein 2a	Ctla 2a	Mouse	Uterus	In vivo	+	Jeong et al. (2005)
Histocompatibility 2, class II antigen A, B1	H2-Ab1	Mouse	Uterus	In vivo	+	Cheon et al. (2002)
Lymphocyte antigen 6 complex, locus A	Lyбa	Mouse	Uterus	In vivo	+	Cheon et al. (2002)
Major histocompatibility complex, class II,	HLA-DOB	Human	Endometrium	In vivo	+	Catalano et al. (2007)
DO β						-
Thymus cell antigen 1, θ	Thy1	Mouse	Uterus	In vivo	+	Cheon et al. (2002)
Immune/inflammation modulators						
Complement component 3	C3	Mouse	Uterus	In vivo	_	Cheon et al. (2002) and Jeong et al. (2005)
Complement component 1, q subcomponent, β-polypeptide	C1qb	Mouse	Uterus	In vivo	+	Cheon et al. (2002)
Galectin 15	LGALS15; OVGAL11	Sheep	Endometrial luminal and superficial glandular epithelium	In vivo	+	Gray et al. (2005) and Gray et al. (2006)
Histidine decarboxylase	Hdc	Mouse	Endometrium epithelial cells	In vivo	+	Paria et al. (1998) and Jeong et al. (2005)
Peptidoglycan recognition protein 1	Pglyrp1	Mouse	Uterus	In vivo	_	Cheon et al. (2002)
Progesterone-induced blocking factor 1 ^b	C13orf24	Mouse,	Systemic γ/δ T-cells (mouse	In vivo in vitro	+	Szekeres-Bartho et al. (1997a, 1999),
		human, sheep	and human), urine (human), endometrial cells (sheep)			Polgar et al. (2004), Lea et al. (2005) and Sandra et al. (2005)
Secreted phosphoprotein 1	Spp1	Mouse	Uterus	In vivo	_	Cheon et al. (2002)
	SPP1	Sheep	Glandular epithelium	In vivo in vitro	_	Johnson et al. (2000)
Interferen related proteins						
Interferon-related proteins Interferon-induced transmembrane protein 3 (1–8U)	IFITM3	Sheep	Endometrium	In vivo	-	Gray et al. (2006)
Interferon, a-inducible protein 27	IF127	Sheep	Endometrium	In vivo	_	Gray et al. (2006)
Interferon, a inducible protein 6	IF16	Sheep	Endometrium	In vivo	_	Gray et al. (2006)
Interferon-induced protein with	IFIT1	Human	Endometrium	In vivo	_	Catalano et al. (2007)
tetratricopeptide repeats 1						
		Sheep	Endometrium	In vivo	_	Gray et al. (2006)
Interferon-related developmental regulator 2	IFRD2	Human	Endometrium	In vivo	+	Catalano et al. (2007)
Interferon-stimulated gene, 20 KD	lsg20	Mouse	Uterus	In vivo	+	Jeong et al. (2005)
Intra cellular signalling						
Immunoresponsive gene 1	lrg1	Mouse	Endometrium luminal epithelium	In vivo	+	Cheon et al. (2002), Cheon et al. (2003), Chen et al. (2003) and Jeong et al. (2005)
Janus kinase 1	JAK1	Human	Stroma, endometrial luminal and glandular	In vitro	+	Catalano <i>et al.</i> (2003)
Lymphocyte cytosolic protein 2	LCP2	Human	epithelium Endometrium	In vivo	+	Catalano et al. (2007)
Nuclear factor, IL-3, regulated	Nfil3	Mouse	Uterus	In vivo	+	Jeong et al. (2007)
Pre-B-cell leukaemia transcription factor 3	PBX3	Human	Endometrium	In vivo	_	Catalano et al. (2007)
Signal transducer and activator of	STATI	Human	Endometrium	In vivo	_	Catalano et al. (2007)
transcription 1, 91 kDa						
Signal transducer and activator of transcription 5A	STAT5a	Sheep	Endometrium	In vivo	+	Gray et al. (2006)
	Stat5a	Mouse	Uterus	In vivo	_	Cheon et al. (2002)

Table 1 Continued.

Gene name ^a	Symbol	Species	Target cell/tissue	Study	Progesterone effect	Reference
Commence of a table of a different	-1		0	,		Cardina and (2007)
Suppressor of cytokine signalling 6	SOCS6	Human	Endometrium	In vivo	_	Catalano et al. (2007)
Prostaglandins and lipid metabolism						
Arachidonate 15-lipoxygenase	Alox 15	Mouse	Uterus	In vivo	+	Cheon et al. (2002)
Prostaglandin-endoperoxide synthase 2	PTGS2	Human	Endometrium	In vitro	-	Critchley et al. (1999)
, , , , , , , , , , , , , , , , , , ,	PTGS2	Sheep	Endometrium luminal and glandular epithelium	In vivo	+	Charpigny et al. (1997) and Gray et al. (2006)
Proteinase inhibitors			2 .			
Serine (or cysteine) proteinase inhibitor, clade A (α-1 antiproteinase, antitrypsin), member 1	SERPINA1	Human	Endometrium	In vivo	_	Catalano et al. (2007)
Secretory leukocyte peptidase inhibitor	SLPI	Human	Endometrial glandular epithelial cells	In vitro	-	King et al. (2000, 2003c)
Uterine milk protein precursor A (family of SERine Proteinase INhibitors; SERPIN)	UTMP	Sheep	Uterine glandular epithelium	In vivo	+	Ing et al. (1989) and Hansen (2007)

^aThe names of the genes are presented according to the HUGO nomenclature (http://www.gene.ucl.ac.uk/nomenclature/). The term 'uterus' has been used when the whole tissue (myometrium and endometrium) has been subjected to gene analysis. Papers referring to microarray analyses are shown in roman. When the gene expression and regulation have been corroborated using a single gene approach, references are shown in bold. ^bProgesterone-induced blocking factor 1 (C13orf24) has been placed as an 'immune/inflammation modulator', since the structure of the protein is not classically recognised as a growth factor or a cytokine.

use of transcriptomics ¹

large numbers of genes are screened simultaneously using broad range or targeted gene arrays

chemokines and their receptors Interferons cytokines and growth factors Prostaglandins Lipoxins intracellular signalling molecules immune modulators specific immune cell populations proteinase inhibitors

Action of Progesterone on epithelial cells

chemo	kines	and	their	recep	otors

selective expression of chemokines and chemokine receptors on trophoblast indicates that

the chemokine receptor network under the influence of progesterone might be critical for the process of implantation

Prostaglandins

prostaglandin production by the endometrium is important for implantation and early pregnancy

PTGS2, necessary for prostaglandin synthesis, is down-regulated by progesterone in human endometrium

Interferons

Action of Progesterone on epithelial cells

cytokines and growth factors :	
CSF1 progesterone induced expression of CSF1 by uterine epithelial cells	
regulation of CSF1R-positive endometrial macrophages as one key endocrine-immune axis associated with implantation success	
LIF positively regulated by progesterone	
Th2/anti-inflammatory paradigm associated with progesterone	
Decidua and peripheral blood T-cells exposed to progesterone secrete IL-4 and IL-5 (progesterone induces a local Th2 bias <i>in utero</i>)	
IL-13 receptor 2 (IL13Ra2) : inhibited by progesterone promote anti-inflammatory activity important for endometrial function and/or implantation	
IL-15 is also positively regulated by progesteroneimportant in the stimulation of uNK cells in late secretory endometrium and first trimester decidua	
down-regulation of TNF receptors	
up-regulation of TGFB1	

Action of Progesterone on epithelial cells

Lipoxins

intracellular signalling molecules

Immune responsive gene 1

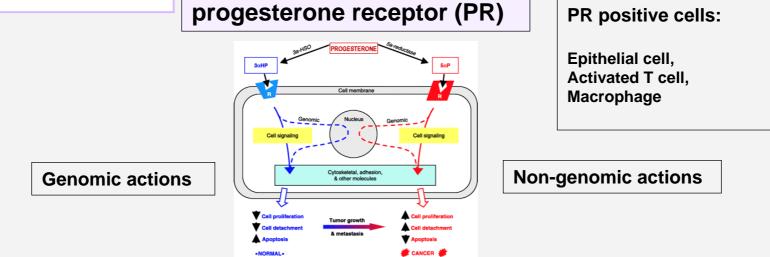
proteinase inhibitors

UTMP, uterine serpin proteinase inhibitor (serpin superfamily of proteinase inhibitors) exhibit weak antiproteinase activity inhibit a wide range of lymphocyte functions important in the inhibition of maternal immune responses directed against antigens expressed on the feto-placental unit regulate cell proliferation possibly including trophoblast

Action of Progesterone on epithelium & immune cells

immune modulators

LGALS15 (galectin 15) important in the regulation of implantation and placentation


SPP1 (secreted phosphoprotein 1, osteopontin) produced by uterine glandular epithelial cells and immune cells present in the endometrium and placenta. epithelial cell-derived SPP1 is progesterone dependent immune cell-derived SPP1 does not appear to be progesterone regulated key link between progesterone and the activity of intrauterine immune cells

Histidine decarboxylase progesterone-sensitive pro-inflammatory mediator

Progesterone-induced blocking factor (C13orf24)

specific immune cell populations

Sex steroid receptors in the non-pregnant reproductive tract

nuclear receptor superfamily of the ligand-inducible transcription factors.

The binding of the ligand–receptor complex to the hormone response element in the DNA then triggers the transcription of oncogenes and genes encoding growth factors and cytokines.

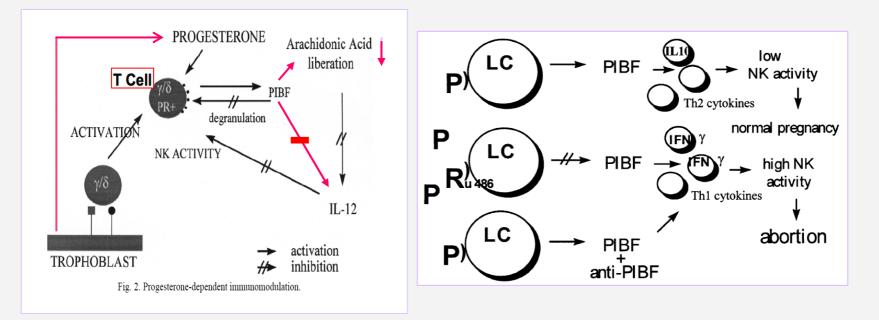
Oestrogen, acting through the ESR1 receptor, differentially regulates the expression of the PGR.

2 isoforms of the PGR (PGRA and PGRB)

show cyclical variation in the glandular epithelium with a decline from the proliferative to the secretory phase PGRB exhibited some variation in the stroma, as did both ESRs; however, the cell types were not identified. membrane progesterone receptors :
non-genomic actions of progesterone
...do not influence gene expression
drive more rapid effects
such as activation of signalling cascades
and inhibition of transmembrane Ca²⁺ entry.
3 membrane progestin receptors(mPGR alpha, beta ß, gamma)
Endometrial mPGR alpha is up-regulated during the luteal phase
and down-regulated in the myometrium with progesterone
withdrawal

are present in ovary as well as the uterus may also influence local immune mediators implicated in T-cell immuno-suppression during pregnancy

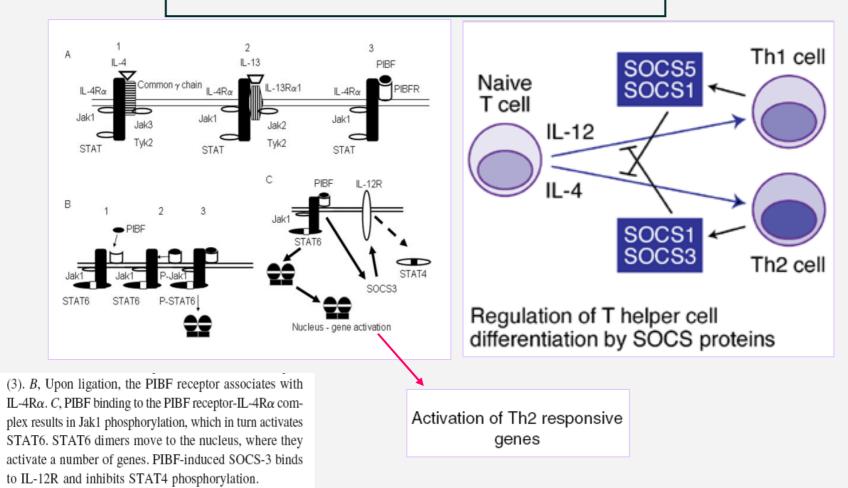
Action of Progesterone on uterine NK cells and T lymphocytes


NK Cell

- express ESR2 but not ESR1 or the progesterone receptors (oestrogen regulation)
- progesterone may indirectly affect NK cell activity through the induction of cytokines from neighbouring cells.
- Also express the NR3C1, which is co-localised with HSD11B1 ...suggests that cortisol may have an anti-inflammatory effect
- Another possibility : progesterone may act through NR3C1 (glucocorticoid receptor) or may affect NK cells via a non-receptor mechanism

Action of Progesterone on uterine NK cells and T lymphocytes

Anti-abortive effect of PIBF :


- . inhibits arachidonic acid release by acting directly on the phopholipase A2 enzyme
- . modifies the cytokine balance
- . inhibits NK activity
- . affect humoral immunity by increasing the production of
- asymmetric antibodies thought to have a blocking function

Action of Progesterone on uterine NK cells and T lymphocytes

T Cell

Th2-biased immune response induced by PIBF

Th2-biased immune response induced by PIBF

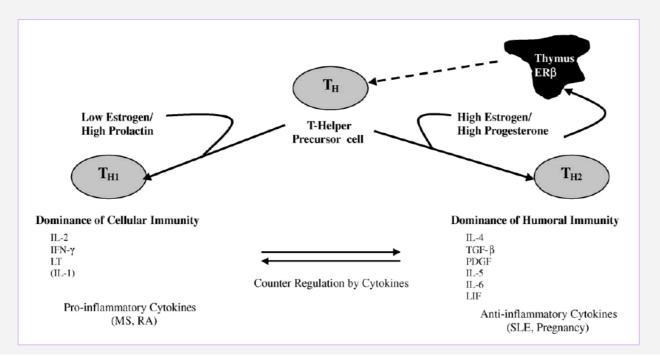


Fig. 1. The pathways of Th-1 and Th-2 lymphocytes. Adapted from Aschkenazzi et al. [5]. ER: oestrogen receptor; IL: interleukin; IFN: interferon; LT: lymphotoxin; MS: multiple sclerosis; RA: rheumatoid arthritis; TGF: transforming growth factor; PDGF: platelet derived growth factor; LIF: leukaemia inhibitory factor; SLE: systemic lupus erythematosus.

Progesterone and the immunology of pregnancy

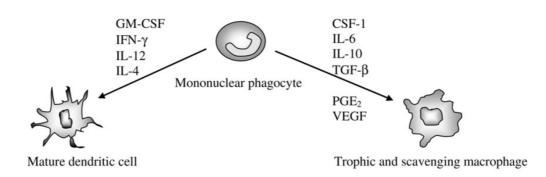
Journal of Steroid Biochemistry & Molecular Biology 97 (2005) 389-396

Macrophage and reproduction

Macrophages play important roles in reproduction.

- . involved in tissue remodelling and development of active immunotolerance to the conceptus.
- . contribute to the regulation of steroidogenesis
- . increased progesterone secretion by granulosa and luteal cells following co-culture with macrophages

Molecules driving mononuclear phagocyte differentiation in the female reproductive tract are principally regulated by sex steroid hormones and SP(seminal plasma)


Progesterone and SP have marked immunosuppressive activity and favour the maturation of trophic and scavenging macrophages

Inflammatory stimuli elicit the release of mononuclear phagocytes from bone marrow favour the recruitment of macrophages in the reproductive tract.

Synthesis of CSF-1 is stimulated by estrogen and progesterone

GM-CSF is stimulated by estrogen and moderately inhibited by progesterone (Robertson *et al.*, 1996_).

Action of Progesterone on Macrophage

Estrogen Stimulates production of GM-CSF and CSF-1 by uterine epithelial cells

Infections Inflammation and immunogenic stimuli sustain differentiation of dendritic cells	Progesterone Stimulates production of CSF-1 by uterine epithelial cells and of PGE ₂ by macrophages suppresses production of GM-CSF by uterine epithelial cells
	Seminal plasma Contains high levels of TGF- β and PGE ₂ Stimulates production of GM-CSF, IL-6 and IL-10 in the female reproductive tract
	Non-immunogenic inflammation Surgery, wounds, smoke sustain differentiation of trophic and scavenging macrophages

Differentiation of macrophages in the reproductive tract

Human Reproduction Vol.22, No.10 pp. 2577–2584, 2007 Advance Access publication on July 30, 2007

Action of Progesterone on Dendritic cells

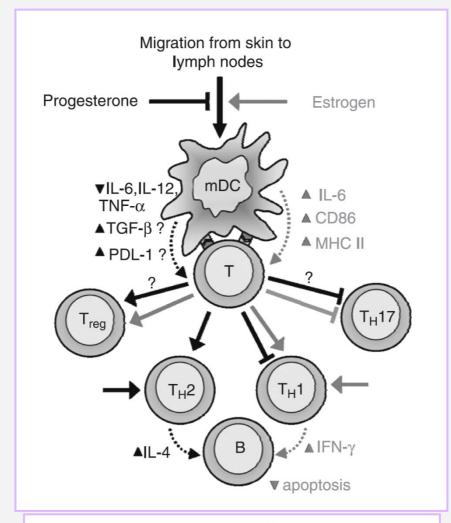


Figure 1. Progesterone and estrogen differentially regulate adaptive immune responses and autoimmunity through direct effects on DC functions.

Action of Progesterone on Dendritic cells

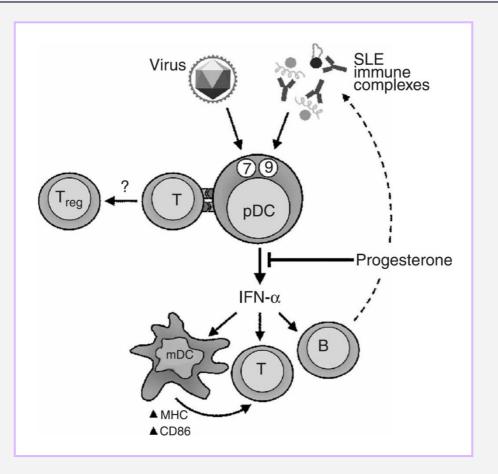


Figure 2. Progesterone regulates anti-viral immunity and autoimmunity through selective blockade of TLR7 and TLR9-mediated IFN- α production by pDCs.

Summary

Cyclical changes in the sex steroids :

influence a variety of genes in the ovary and uterus, which act to protect these tissues against pathogens, while simultaneously preparing them for ovulation, menstruation or implantation. (immune-endocrine interaction)

During the period of increased uterine receptivity,

epithelial cells exhibit

increased toll receptor expression altered produce specific antimicrobial peptides (e.g. SLPI)enhancing the ability to both detect and respond against PAMPs on micro-organisms.

Sex steroids regulate the chemokines and receptors that act in the selective recruit of leukocytes.

progesterone have anti-inflammatory activities.

progesterone to influence NK cells(by PIBF) and macrophage

C13orf24 (PIBF) is produced systemically by PGR-positive T-cells affects different aspects of immune function including reduced NK activity induce production of anti-inflammatory Th2-like cytokines.

Crosstalk between the sex steroids and immune mediators (systemic and local) are central to all these functions

Key areas for future investigation

Rregulation and function of recently identified progesterone target genes

Manipulation of the sex steroid/glucocorticoid-regulated immunomodulatory pathways

For improved reproductive management in humans and animals.