

Unlocking Female Reproductive Longevity : The Role of Cellular Senescence in Ovarian Aging

Ok Hee Jeon, Ph.D.

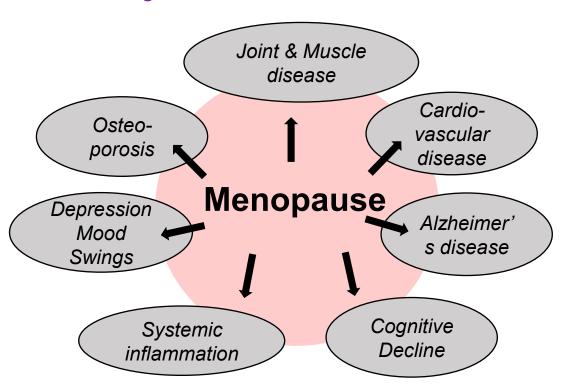
Department of Convergence Medicine Korea University College of Medicine

Aging as a root cause of age-related chronic diseases

Aging is the primary risk factor for multimorbidity and chronic diseases

Why ovarian aging matters?

Ovary is the first organ to undergo functional decline

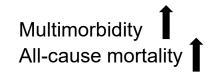

Fertility by age

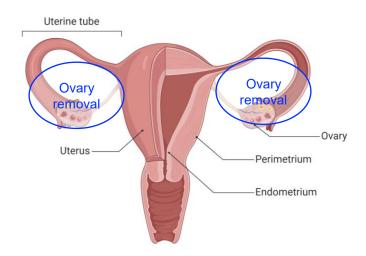
Fertility

Menopause

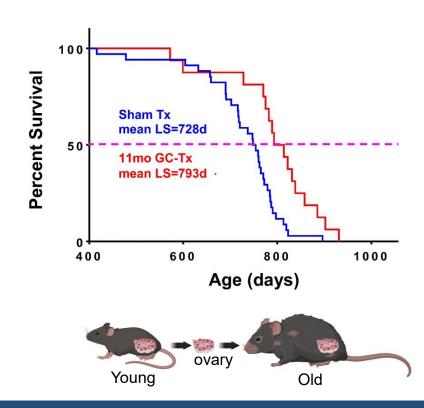
20-24 25-29 30-34 35-38 40-44 45-48 years

Menopause marks a systemic shift, increasing risks for various chronic conditions

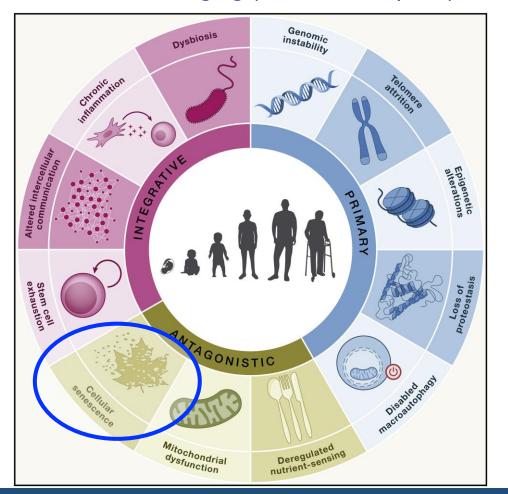

Menopause, the endpoint of ovarian aging, marks the onset of accelerated biological aging and chronic disease risk

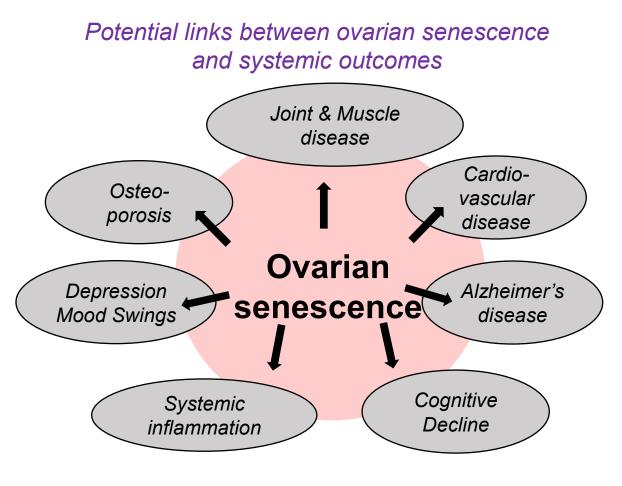

Ovarian function influences systemic aging in women

Women with later age of menopause live longer

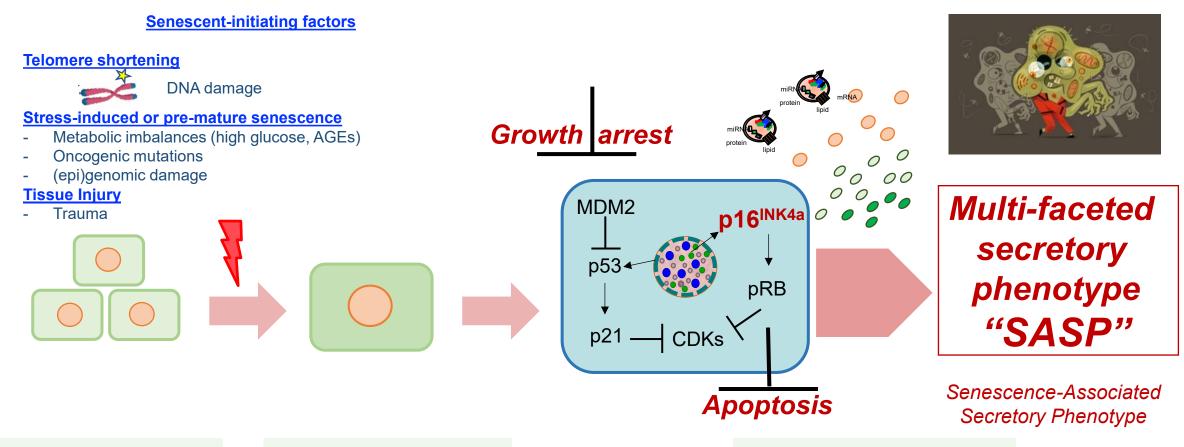


Negative impacts of oophorectomy in women


Transplanting young ovaries extends lifespan in aged mice

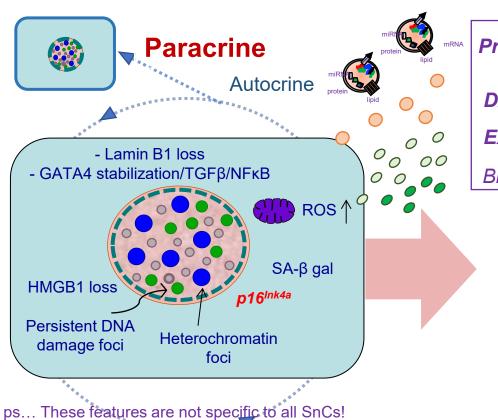


Cellular senescence: One of the biological processes behind ovarian aging


13 hallmarks of aging (+ECM discruption)

What is cellular senescence?

Aging doesn't just happen at the tissue or organ level. It starts with changes inside individual cells



Proliferating cells (non-senescent cells, non-SnC)

Initiation of senescence

Stabilization of senescence (senescent cells (SnC))

How senescent cells drive aging and diseases?

Pro-inflammatory (cytokines, chemokines, growth factors, proteases)

DAMP (HMGB1 loss/secretion, cf-mt-DNA)

Extracellular Vesicles (MVs & exosomes)

Bioactive lipids, miRNAs, microsomes etc

Inflammation + (Inflamm-aging)

Perturbed signaling

Destroy tissues (ECM disruption)

Disrupt normal cell functions

Prevent stem cell functions

Our question:
Ovarian to
Systemic aging
in women

Diseased tissues

Accumulation of SnC

Not all SnCs express these markers

Spread of SnC and "sterile" Inflammation

When and where do senescent cells occur?

With increasing age

Human, non-human primates, rodents, etc

At sites of age-related pathology

- Neurodegenerative diseases (Senescent neurons & glial cells)
- Eye degenerative diseases (Senescent RPE, lens, retinal cells)
- Pulmonary fibrosis (Senescent pulmonary cells)
- Cardiac fibrosis (Senescent cardiomyocytes)
- Cancer metastasis and recurrence (Senescent cancer cells)
- Degenerative disc diseases (Senescent NP/AF cells)
- Liver fibrosis (Senescent liver cells)
- Kidney fibrosis (Senescent kidney cells)
- Ovarian diseases/Infertility (Senescent granulosa cells)
- Diabetes (Senescent β-cells)
- Osteoporosis (Senescent osteoblasts and osteocytes)
- Osteoarthritis (Senescent chondrocytes)
- Sarcopenia/frailty (Senescent satellite cells and fibro-adipogenic progenitors)

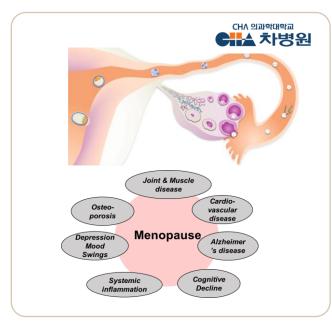
Embryogenesis, timely parturition, wound healing placental development during pregnancy

NOT ALL BAD!

Senotherapies: from joints to ovaries

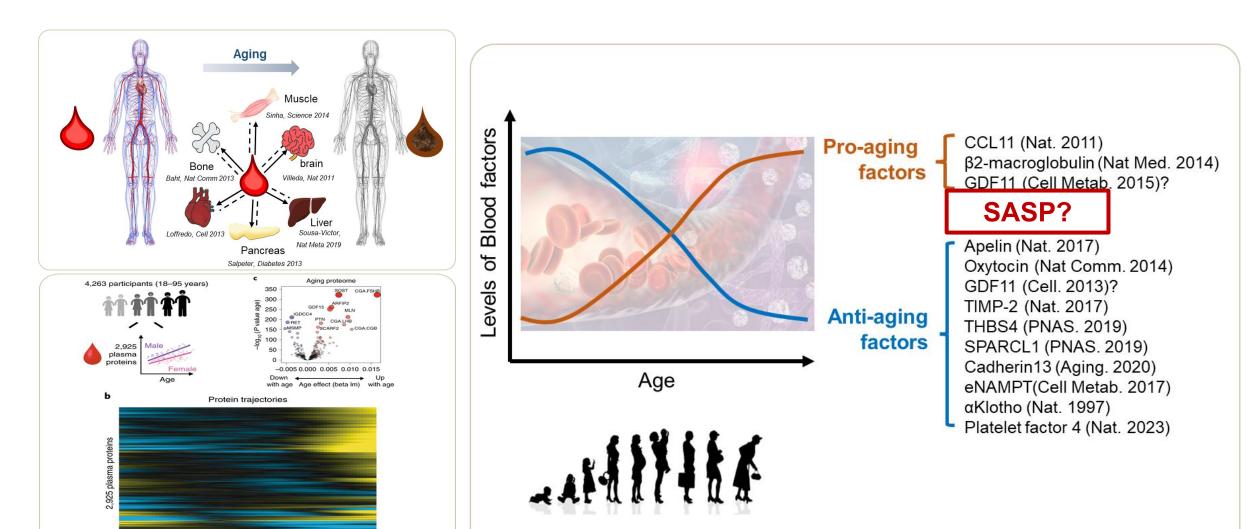
- Senolytics = a new class of drugs that 'selectively' kill senescent cells
- Senomorphics = drugs that 'selectively' suppress certain SASP modules

Osteoarthritis


Clinical trial phase 2b (NCT0412994);
Patents 10,130,628; 9,993,472; 9,855,266; 9,849,128

Jeon et al., Nat Med, 2017; Jeon et al., JCI, 2018; Jeon et al., JCI insight, 2019; Faust et al., JCI; Gil et al., Aging, 2022; Chin et al., Aging cell, 2023

Muscle injury / Sarcopenia

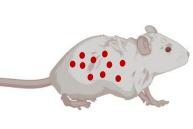

Jeon et al., Nat Met, 2022; Kim and Gil et al., Journal of Cachexia, Sarcopenia and Muscle, 2025

Ovarian Aging

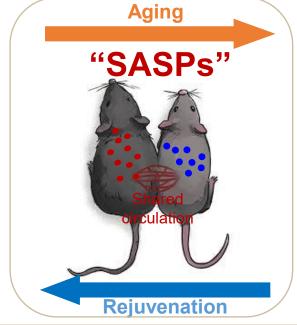
Shin et al., Rejuvenative Research, 2022; Shin et al., Menopause, 2023; Gwak et al., Envir Res, 2024

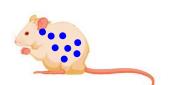
Blood-borne factors reflect biological aging

Age (years)


zscore

Systemic circulation of SASPs may link aging and rejuvenation


"Heterochronic Parabiosis"


Pro-aging factors

- Scare in young animals
- Increase with age
- Reduce tissue homeostasis in young animals

18-mon-old mouse (≈ 65-yr-old human)

3-mon-old mouse (≈ 20-yr-old human)

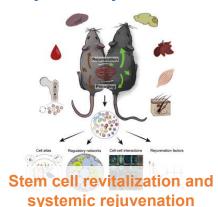
Muscle (Conboy, Nat 2005; Sinha, Science 2014)

Brain (Villeda, Nat 2011, 2014; Yousef 2019; Kim, IJMS 2020),

Liver (Conboy, Nat 2005; Sousa-Victor, Nat Meta 2019)

Pancreas (Salpeter, Diabetes 2013)

Heart (Loffredo. Cell 2013)

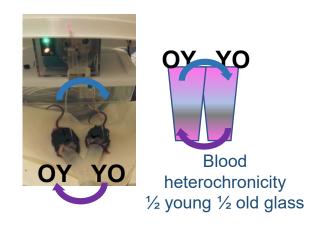

Bone (Baht, Nat Comm 2013; Yi, Swiss Med Wkly

2018; Li Metabolites 2020)

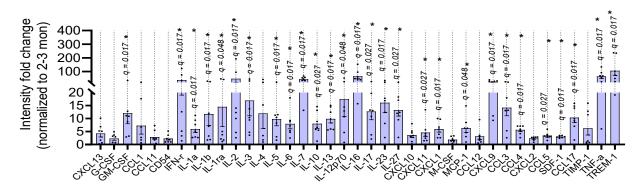
Anti-aging factors

- Abundant in young animals
- Decline with age
- Rejuvenate tissues (heart, brain, muscle, liver, bone, pancreas, kidney, liver, aorta, intervertebral disc) when supplied to old animal

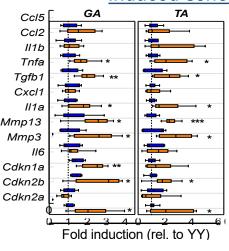
Stem cell revitalization and systemic rejuvenation

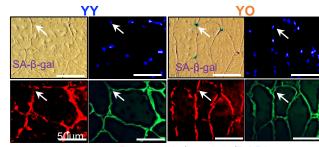

Adult stem cell rejuvenation

factors


Ma et al., Cell Stem Cell, 2022

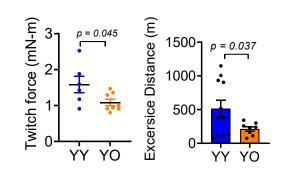
Do circulating SASPs spread aging?

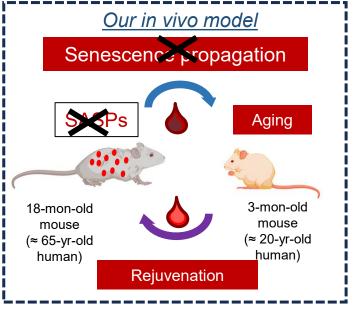

Heterochronic apheresis



Circulating SASP factors in the old blood

Induced senescence in young skeletal muscle

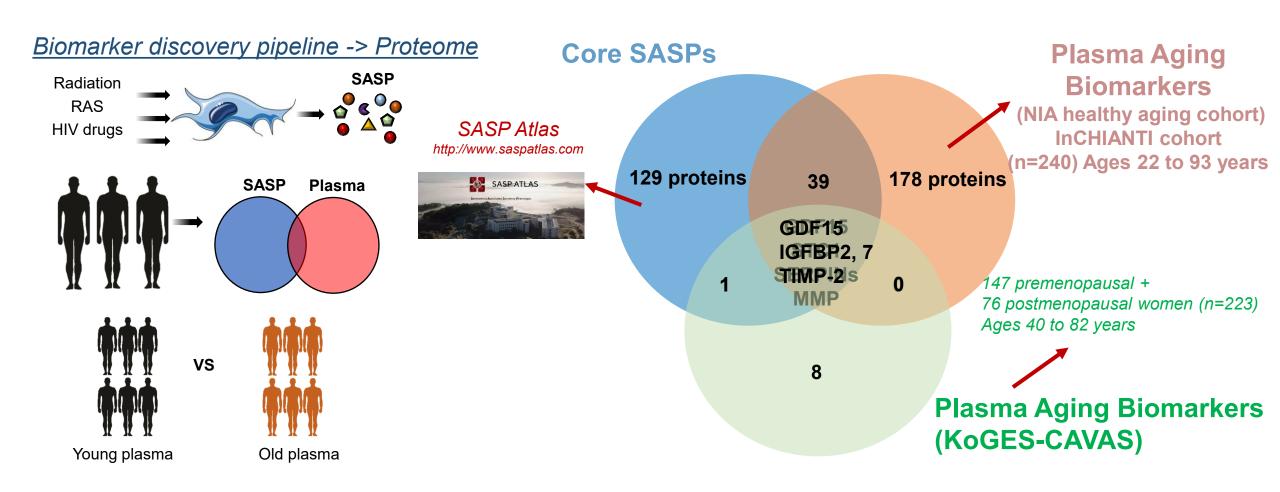




Dystrophin/Laminin/DAPI

* SA-β-gal+ satellite cells that were located between the laminin+ basal lamina and dystrophin-outlined subsarcolemma

Functional tests



Jeon et al., Nature Metabolism, 2022

Core SASPs overlap with plasma aging markers in human cohorts

SASPs are in aged human blood

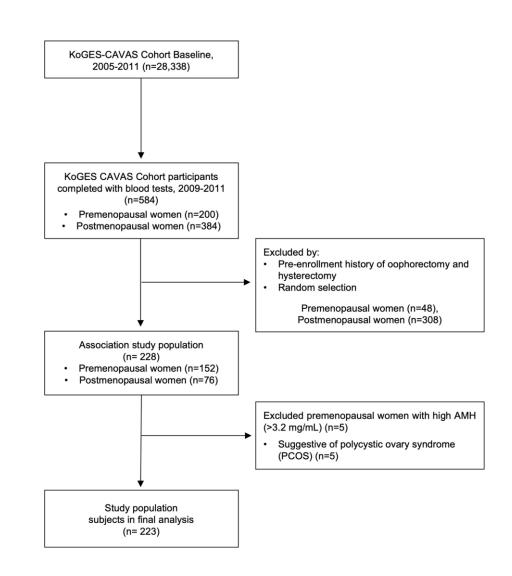
Do circulating SASPs reflect systemic signals of ovarian aging, particularly in postmenopausal women?

SASP and ovarian aging in a prospective population-based cohort study

Study participants

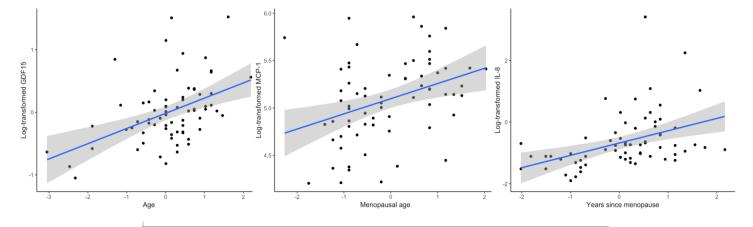
- 147 pre- $(46.4 \pm 3.9 \text{ y})$ and 76 $(67.0 \pm 6.9 \text{ y})$ post-menopausal women in the Korean Genome and Epidemiology Study Cardiovascular Disease Association Study (KoGES-CAVAS), a population-based prospective cohort study conducted by Korea NIH

Measured markers


- 32 SASP proteins overlapped with aging-related markers and AMH in human plasma

Outcomes

- Chronological age
- **Biological age:** menopausal state (menopausal age and years since menopause) and AMH level (mean 0.5 ± 0.7ng/ml)


Statistical methods

- Multivariate analysis adjusted for age and BMI

Plasma SASPs reflects menopausal and chronological ages

- Investigated circulating 32 SASP proteins in 76 post-menopausal women (avg 67 ± 6.6 y; range 46–82 y) from KoGES-CAVAS study
- Identified GDF-15, IGFBP-2, and TNFα as correlates of chronological age
- IL-8 and MCP-1 were associated with menopausal age and years since menopause
- A combination of 13 SASPs proteins are selected to be associated with chronological, menopausal age and years since menopause using multiproteins model

Variables	Chronological age				
	Adjusted for menopausal age	Adjusted for years since menopause	Menopausal age	Years since menopause	
GDF15	0.400	0.141	-	-	
IFN-γ		-	-0.019	-	
IGFBP-2	0.213	0.053	_	-	
IGFBP-7	0.284	-	_	-	
IL-1β	-	-0.250	-0.218	0.155	
IL-15	-	-	-0.025	0.004	
IL-17A	0.153	0.040	_	-	
IL-8	0.020	-	-0.132	0.090	
MCP-1	-	0.225	0.495	-0.336	
TIMP-2	-	-0.120	-0.349	0.169	
TNF-α	0.113	-	-0.120	0.046	
VEGF-A	-	-0.021	-0.045	0.023	
IP-10	0.006	0.104	0.048	-	

SASPs can act as systemic indicators of ovarian aging, reflecting senescence burden that evolves with ovarian aging

Association of SASP proteins with menopausal status

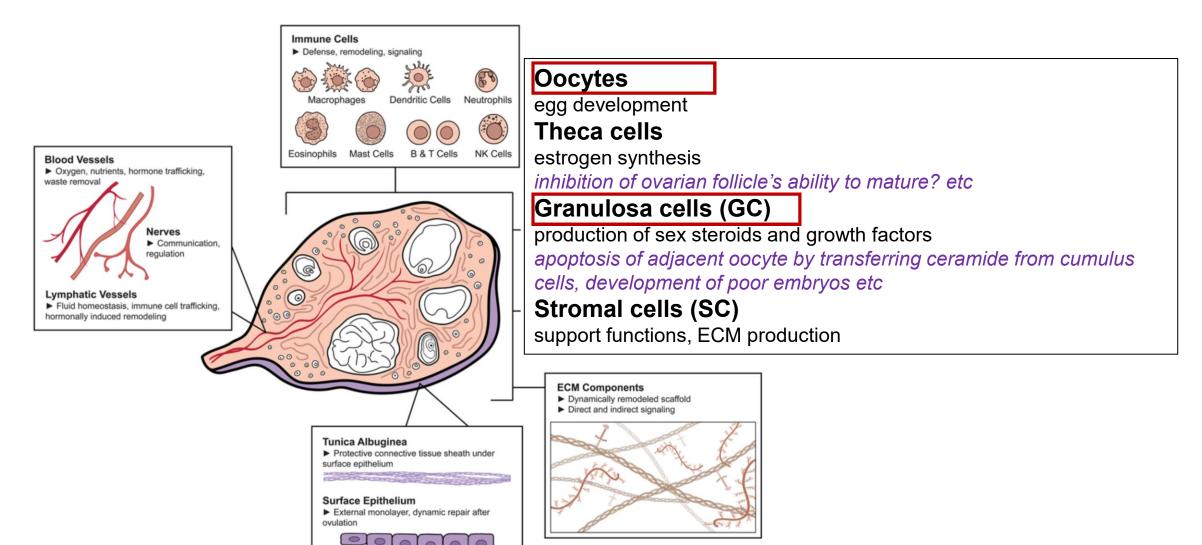
SASP	Coefficient (SE)	<i>p</i> -value	Adjusted <i>p</i> -value ^a
Eotaxin	0.457 (0.126)	<0.001	0.001
GDF15	-0.643 (0.266)	0.017	0.030
IFN-γ	0.544 (0.165)	0.001	0.003
IGFBP-2	6.838 (0.181)	<0.001	<0.001
IGFBP-4	7.038 (0.145)	<0.001	<0.001
IGFBP-5	7.057 (0.238)	<0.001	<0.001
IGFBP-7	6.940 (0.068)	<0.001	<0.001
IL-1α	-1.047 (0.392)	0.009	0.017
IL-2	-0.414(0.145)	0.004	0.009
IL-6	-0.757 (0.282)	0.008	0.016
IL-7	-0.567 (0.139)	<0.001	<0.001
IL-8	-0.597 (0.219)	0.007	0.015
IL-10	-0.354 (0.154)	0.022	0.036
MCP-1	0.821 (0.153)	<0.001	<0.001
MIP1α	-0.628 (0.208)	0.003	0.008
TIMP-1	0.378 (0.105)	<0.001	<0.001
TIMP-2	0.249 (0.078)	0.001	0.003

^{*} Pearson correlation coefficient (SE) was calculated by linear association using generalized linear regression model. Adjusted p-value for the false discovery rate derived with the Benjamini-Hochberg method.

^{**} Blue boxes indicate SASPs that are positively associated with chronological age

Association of SASP proteins with AMH level

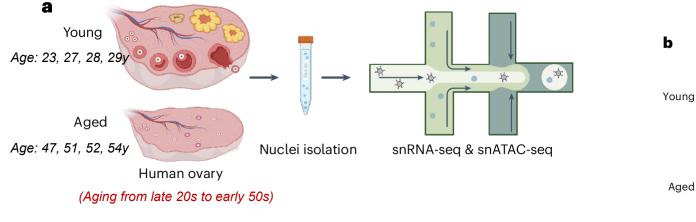
SASP	Coefficient (SE)	<i>p</i> -value	Adjusted <i>p-</i> value ^a
IL-6	0.186 (0.082)	0.026	0.560
IFN-y	0.075 (0.036)	0.040	0.560
VEGF-A	0.112 (0.077)	0.147	0.714
IGFBP-7	-0.015 (0.011)	0.176	0.714
GDF15	-0.093 (0.075)	0.212	0.714
TIMP-2	0.112(0.077)	0.255	0.714

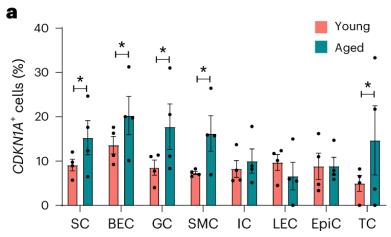

^{*}Pearson correlation coefficient values (standard error) were calculated by linear association using generalized linear regression (GLM) model. Adjusted p-value for the false discovery rate derived with the Benjamini–Hochberg method.

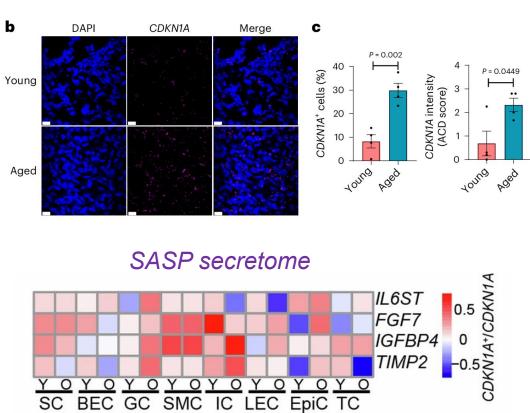
- No significant associations between SASP levels and AMH in premenopausal middleaged/older women
- Subgroup analysis (<45 y) showed lack of association: lack of younger participants?

Plasma SASPs reflect menopausal status but may not be reliable biomarkers of ovarian reserve in midlife women

^{**} Blue boxes indicate SASPs that are positively associated with chronological age

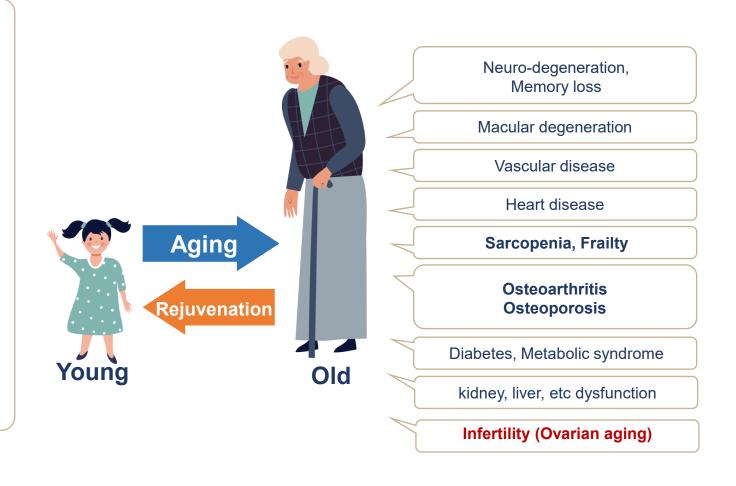

Complex biology of human ovarian aging and senescence



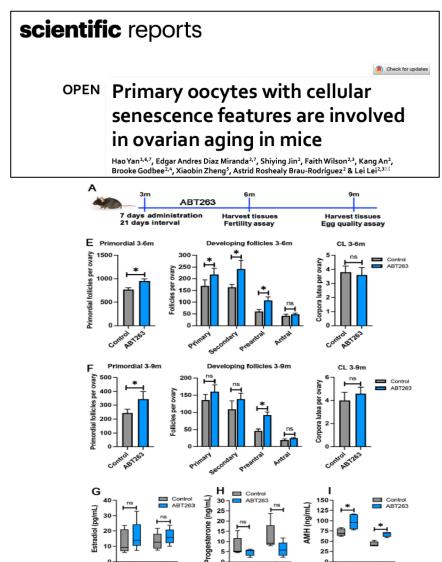

Ovary is composed of various cell types, each potentially contributing differently to cellular senescence and aging

Which cells become senescence in human aged ovary?

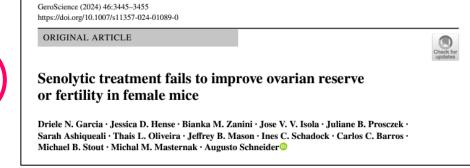
Increased proportion of senescent cells (p21+ cells) in the aged ovary

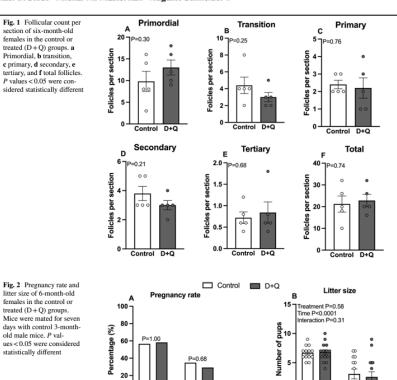


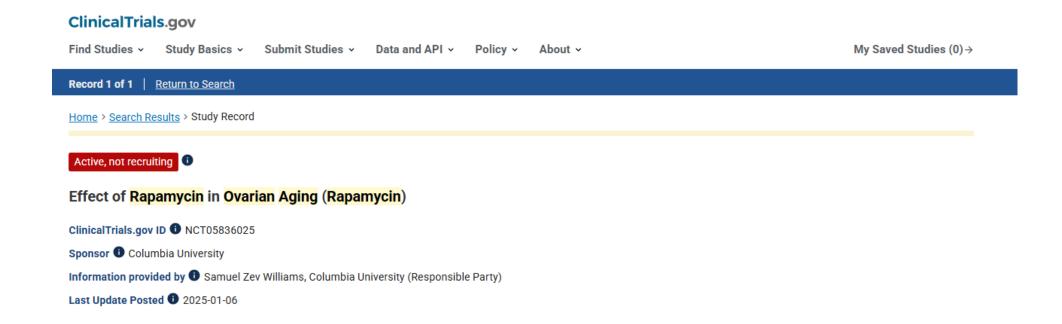
Aging can be modified by anti-aging interventions


Rejuvenation —not just slowing aging but actually reversing it — is feasible at least in mice!

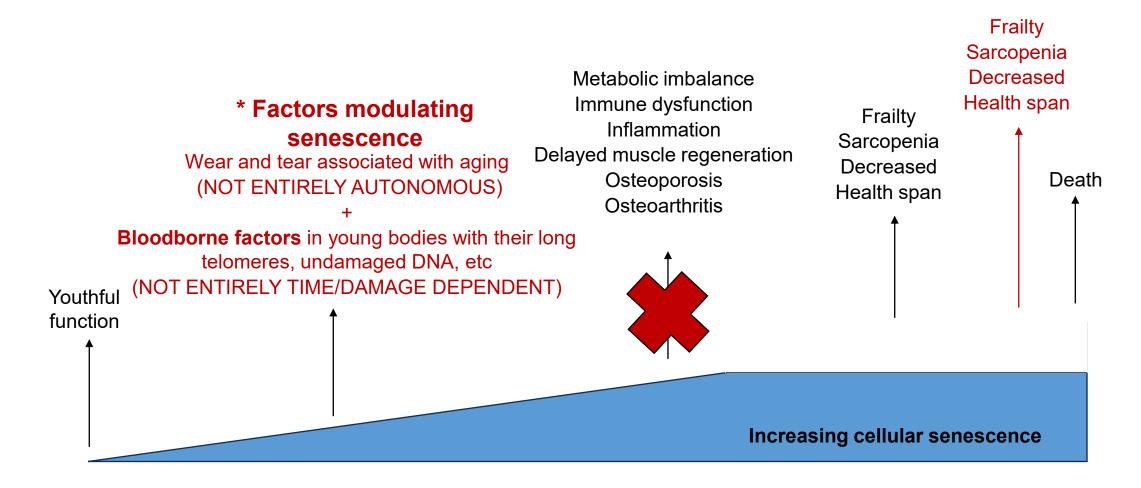
- Epigenetic reprogramming of aged cells
- Metabolic interventions (dietary restriction, exercise, etc.)
- Elimination of harmful senescent cells
 : Senotherapeutics (senolytics & senomorphics)
- Utilization of factors within bloodstreamYoung blood plasma treatment




Senotherapy shows variable efficacy in delaying ovarian aging in mice


Better understanding of ovarian senescence is needed for clinical translation

Clinical trial of Rapamycin for delaying ovarian aging in human

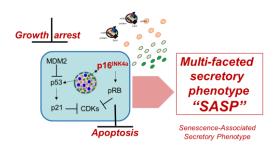

A randomized, double-blind, placebo-controlled pilot study

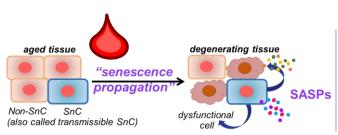
Population: Premenopausal women (age 35-45y)

Primary Endpoint: Ovarian function and aging biomarkers (e.g., AMH levels, follicle count)

Key Takeaway: Targeting senescence to treat and prevent agerelated diseases

Our lab focus: developing senotherapies for age-related disease


Cellular senescence are key factors in impairing regeneration in response to injury and aging



Senescent cells trigger secondary aging in neighboring cells, drive systemic aging, and alter tissue microenvironment

Develop senotherapies to create a pro-regenerative environment and treat age-related diseases

Map senescence in musculoskeletal diseases and others & Discover associated biomarkers (scRNA-seq, spatial transcriptomics, proteomics)

Define senescence's impact on young cells and tissue function (2D, 3D bioprinted and microfluidics based aged tissue model, in vivo, patients)

Develop rejuvenation intervention to target senescent cells (e.g., senolytics)

Senescence is a treatable hallmark, and our lab develops targeted therapies to reverse aging-related degeneration

Acknowledgements

Korea University College of Medicine

: Aging Research and Technology Group

Tae-hwan Gil

Ji-Won Shin

Jiyeon Kim

DongHyun Jang

EunHa Shim

YeonKyeong Yoo

HyunChan Cho

Alumni

HyoKyeong Lee

Collaborators

Judith Campisi (Buck Institute for Research on Aging)

Irina/Michael Conboy (UC Berkeley)

Jennifer Elisseeff, Ph.D. (Johns Hopkins)

Jinah Jang, Ph.D. (POSTECH)

Ki-Mo Jang (KU College of Medicine)

Sung Hye Kong (SNU Bundang Hospital)

JiHyun Kim (Cha Bundang Hospital)

Gyudo Lee (KU)

Seok Sid Chung/Hyunho Kim (Mechanical Engineering @ KU)

Geun Hyung Kim (SKKU)

Thank you for your attention!

Baseline characteristics of participants

	Premenopausa	al women (n=147)	Postmenopaus	sal women (n=76)	
Variables	Mean ± SD ^a	Median (IQR) ^b	$Mean \pm SD$	Median (IQR)	Р
Age (years)	46.4 ± 3.9	46 (43–50)	66.9 ± 6.9	68 (63.5–71)	<0.001
BMI (kg/m²)	23.9 ± 3.2	23.7 (21.7–25.7)	23.5 ± 3.0	23.3 (21.1–25.3)	0.536
AMH (ng/mL)	0.5 ± 0.7	0.2 (0.1–0.7)	_	<u>-</u>	_

All of ± data indicates mean ± standard deviation of the mean. Median (interquartile range) of the level of SASP in study population. P-values were analyzed by a two-tailed unpaired t-test or the Mann–Whitney U test was used to compare means or medians, respectively, of the SASP according to menopausal status

^{*} Year since menopause: This variable is often used as an indicator of cumulative biological aging or hormonal deprivation over time